

District of Lantzville Annual Water Report ~ 2024 ~

Date of Report: February 19, 2025

Period of Monitoring: January to December 2024

Water Supply Permit Number: 1310847

Location of Water System: Lantzville, BC

Name of Owner: District of Lantzville

Contact Person(s): Glenn Morphy

Director of Public Works

District of Lantzville Phone: 250.933.2250 Fax: 250.390.5188

Email: gmorphy@lantzville.ca

This report provides an overview of the District of Lantzville community water system that served approximately 1009 connections in 2024. This report does not cover properties served by private wells.

Water System Description

Source:

The District of Lantzville has six wells that produced a combined average of 865 cubic meters of water per day. Each of the six wells varies in depth from 21m to 107m. Within each well there are pumps that range in horsepower from 5hp to 20 hp. The District has stand-by generators that can supply power to the pumps in the event of a power outage.

Five of the wells are in a semi-confined aquifer. A semi-confined aquifer is an aquifer partially confined by soil layers of low permeability through which recharge and discharge can still occur. One well is located within bedrock. A bedrock well is drilled in bedrock and usually hits cracks and fissures within the rock to provide a stable source of water.

The wells, while during the winter months artesian, the overall supply typically drops during the dry season by about 15%. However, in 2024 The District of Lantzville sustained a drought although not as severe as the previous two years the aquifer still sustained an average 30% drop. In addition to the decline in supply, water demands increase substantially during the summer months, as people tend to irrigate their lawns and gardens. Therefore, the District has water restrictions to ensure conservation during these seasonal demands (see page 4). In 2025 the Public Works Department will be submitting an updated Water Conservation Plan which will include an updated water restrictions plan/policy.

In addition to the wells, the District of Lantzville receives a limited supply from the City of Nanaimo. Total allotment from the City of Nanaimo at present, if needed, would be 1,360 cubic meters per day. In 2024 the District used 322 cubic meters from the City of Nanaimo interconnection to address an emergency water drop in our reservoir that was caused by a large watermain break.

The District of Lantzville and the City of Nanaimo have an agreement in place that sees the City of Nanaimo providing the District of Lantzville with water with conditions. One of those conditions is that the District of Lantzville will maintain the same level of water restriction as the City of Nanaimo but the District may impose higher level of restrictions, if required.

Water suppliers in the Regional District of Nanaimo have adopted consistently defined water restrictions stages to minimize confusion for residents on community water systems across the region. Private wells are not subject to municipal watering restrictions, but conservation is encouraged because water is a shared resource. The following table outlines the 4 stages of water restrictions for the District of Lantzville:

	STAGE	1	2	3	4		
	Effective Date	As Required	As Required		As Required		
WHEN	Sprinkling Times	Between 7 PM – 7 AM	7-10 AM <u>OR</u> 7-10 PM for a MAX of 2 HOURS	oluntary Re	SPRINKLING BAN: LAWN WATERING NOT		
^	Frequency	Any Day	Every Other Day Even # Houses – Even Days Odd # Houses – Odd days	Voluntary Reductions on top of Stage	PERMITTED		
	Pop-Up Spray, Rotors and Sprinklers	Only during permitted times	Only during permitted times	top of Sta	NOT PERMITTED		
HOW	Hand-Watering* (trees, shrubs, vegetables)	ANYT (advised to water in the even	early morning or in the		ONLY BETWEEN 7-10 AM OR 7-10 PM		
	Micro / Drip* Irrigation	ANYTIME – advised	d to check for leaks	plemen	7-10 AIVI <u>OIX</u> 7-10 FIVI		
	Watering Lawns	Permitted during sprinkling times	Permitted during sprinkling times/ days	ted as rec	NOT PERMITTED		
	Watering Ornamental Shrubs, Flowers and Trees	Permitted during sprinkling times	Permitted during sprinkling times/days	2– implemented as required, prior to e	ONLY WITH DRIP or HAND WATERING		
WHAT	Watering Vegetable Gardens or Fruit Trees	ANYT (advised to water in the evening - less	early morning or in the		ANYTIME (advised to water in the early morning or in the evening)		
WH	Washing Vehicles, Boats, Houses	ONLY WITH HOSE WITH SHUT OFF DEVICE	ONLY WITH HOSE WITH SHUT OFF DEVICE	ed lawn ı	NOT PERMITTED Only exception is for safety		
	Washing Sidewalks or Driveways	ANYTIME (advised to use a broom)	ANYTIME (advised to use a broom)	nforced lawn watering ban	Only prior to application of paint, preservative, stucco or sealant		
	Filling Fountains, Pools or Hot Tubs	ANYTIME	ANYTIME	ban	NOT PERMITTED		
	New Lawn Permits	Can apply for permit	Can apply for permit	١	NO PERMITS ISSUED		

Per Water System Bylaw No. 140, 2018 Updated: April 30, 2018

Treatment:

The water from five wells from the Harby Road Well Field is pumped via an isolated supply line to the existing 1854.8 cubic meter concrete reservoir on Ware Road. Prior to the water supply reaching the reservoir, chlorine is injected in very small doses to eliminate the possibility of bacteria growth.

The water from one well within the Foothills is pumped via isolated supply line to a 1000 cubic meter concrete reservoir. Prior to the water reaching the reservoir, chlorine is injected in very small doses to eliminate the possibility of bacteria growth.

Prior to water entering both reservoirs, a small pump that is attached to the supply line injects chlorine into the main line entering the reservoirs. The "chlorine pumps" are controlled by the Supervisory Control and Data Acquisitions Systems (SCADA) and are activated at the same time the well pumps start. The District is very aware of the amount of chlorine that is being placed in the system. Currently, staff maintains a chlorine residual of between 0.1 mg/L and 0.3 mg/L within the distribution system.

Reservoirs:

The District has three reservoirs: one at Ware Road, one on Harwood Drive and another within the Foothills. The Ware Road reservoir consists of a two-chamber 1,854 cubic meter concrete tank that is partially buried in the ground. With the two chambers, the District can drain one chamber for cleaning/repairs, while keeping the second chamber in operation. Also, at the Ware Road reservoir, there are booster pumps which alternate in pumping water to a higher elevation reservoir, and a permanent generator and the SCADA system that controls both the water and sewer systems in the District.

From the Ware Road reservoir, water is distributed in two directions. Firstly, the water is released from the reservoir via gravity to the lower pressure zone; this zone is mainly any part of the water distribution systems that is north of the Island Highway apart from a short portion of Lantzville Road. The second direction has the water being pumped from the Ware Road reservoir to a second reservoir, which is at a higher elevation on Harwood Drive.

The Harwood Road reservoir, a 660 cubic meter concrete tank, supplies the upper pressure zone. The upper pressure zone consists of any part of the water distribution system that is above (south) of the highway except for a few properties on the North side of the highway.

The District of Lantzville has a third reservoir, within the Foothills, that services the Foothills zone which is the water system that is within the Foothills Development. It is a 1,000 cubic meter concrete reservoir that provides water to the infrastructure in the Foothills development. This reservoir is connected to the District Water System and is owned by the District of Lantzville as of August 2018. The water from this reservoir can be used in any part of the Districts water system as it is connected through pressure reducing valves and can provide extra storage for fire flow purposes.

Distribution System:

The Distribution System consists of approximately 22,696 meters of PVC (plastic) pipe. In addition to the PVC, there is approximately 11,828 meters of AC (asbestos cement) pipe, 1,096 meters of HDPE (high density polyethylene) pipe and approximately 620 meters of DI (ductile iron) for an approximate total of 36,240 meters.

The following table shows the different pipes and lengths of those pipes that are in the District's water distribution system:

Type of Pipe	Length
200 Millimeter – PVC	14,199 Meters (M)
250 Millimeter – PVC	5,445 M
300 Millimeter – PVC	1,874 M
350 Millimeter – PVC	543 M
150 Millimeter – PVC	485 M
100 Millimeter – PVC	150 M
100 Millimeter – HDPE	1,096 M
100 Millimeter – Asbestos Cement (AC)	4,683 M
150 Millimeter – AC	6,260 M
200 Millimeter – AC	825 M
250 Millimeter – AC	60 M
250 Millimeter – Ductile Iron (DI)	620 M

In addition to the amount of water pipes, there are eight pressure-reducing valves (PRVs) and approximately 1009 service connections.

With several separate pressure zones within the District's water system there is a need for interconnections to increase fire flow capacity. A PRV allows this interconnection. When the pressure on the lower side drops (only happens when we see a large main break or a when a fire requires an abundance of water), the PRV opens and water is supplied from the upper pressure zone to the lower pressure zone. When the pressure in the lower zone returns to normal, the PRVs are then closed, separating the zones once again.

There are currently 32 dead ends in the water system. There are no areas where the water goes stagnant within the water system. This is due to the District's Annual Uni-Directional Flushing Program which occurs from March to April.

Improvements and Emergent Projects:

The District of Lantzville continues to update and upgrade the water infrastructure.

Planned and emergent projects completed in 2024.

- Completed the watermain replacement on Harby Road East, Joy Way and Rossiter Ave
- Replaced 18 water meters and installed 13 new meters
- Large watermain repair on Lynn Drive and several water service repairs throughout Lantzville
- Completed an emergency repair at the Harby Road well field as well pump #5 failed
- Foothills emergent replacement as Verifiable Frequency Drive (VFD) failed due to lightning strike
- Ware Road emergent replacement as Verifiable Frequency Drive (VFD) failed due to lightning strike
- Repaired and installed new buster pumps at Ware Road Reservoir that has improved efficiency

Water System Maintenance

Following best practices, the District of Lantzville water system maintenance is as follows:

Source

Maintenance on the Wells and Kiosks:

- Back flush every 7 to 10 years
- Remove vegetation every 1 to 2 years
- Wire brush and re-paint piping every 2 to 5years
- Visual check daily
- Annual water sample testing

Treatment

Maintenance on the Chlorinator:

- Equipment taken apart and cleaned twice per year
- Hypochlorite solution is added once a week or as needed
- Chlorine levels are adjusted as needed

Reservoirs

Maintenance on the Reservoirs:

- Drained and cleaned every five years or as needed
- Daily/Weekly/Monthly inspections of hatches and venting
- Concrete integrity
- Landscape

Distribution System

Maintenance of the Distribution System:

- Entire system flush twice per year
- Hydrants disassemble and re-assemble once per year
- Meter replacement
- Brush around hydrants as necessary
- Weekly water sample collecting
- Leak Detection Program

Water Sampling and Testing Program

As per the requirements of Island Health, the District of Lantzville collects samples from 13 locations on the treated side of the water system monthly for testing. In 2024, the District of Lantzville received 0 positive test results for coliform or E-coli through the sampling program and is fully compliant with all regulations.

Monitoring for coliform/E-coli, as per Section 11 of the *Drinking Water Protection Act* and Section 8 of the *Drinking Water Protection Regulation*

DISTRICT OF LANTZVILLE

Facility Location: 7182 Lantzville Road, Lantzville

Facility Information: Facility Type: 301-10000 (DWT)

Facility Sampling History: No Coliform or E-coli

Annual Untreated Water Testing

On a yearly basis, the District carries out a broader range of testing than is required on a weekly or quarterly basis.

During the annual sampling, water is collected directly from the well prior to any treatment. These samples are then sent off to a lab that has the capability to carry out the full range of testing required.

The following report from BV Labs is for the untreated water testing the District does on different wells annually. In 2024, the Foothills well, well 4 and well 12 were sampled and tested and the results are as follows:

DISTRICT OF LANTZVILLE Your P.O. #: 955641

VIHA PKG, WELLS/SPRINGS - BURNABY (WATER)

Bureau Veritas ID		CXL840		CXL841		CXL842		
Sampling Date		2024/10/09 09:00		2024/10/09 08:00		2024/10/09 08:15		
COC Number		C#738834-01-01		C#738834-01-01		C#738834-01-01		
	UNITS	FOOTHILL WELL D4	RDL	WELL 12	QC Batch	WELL 4	RDL	QC Batch
ANIONS					***************************************			
Nitrite (N)	mg/L	<0.0050	0.0050	<0.0050	B560767	<0.0050	0.0050	B560767
Calculated Parameters								
Total Hardness (CaCO3)	mg/L	52.8	0.50	77.4	B557807	84.1	0.50	B557807
Nitrate (N)	mg/L	<0.020	0.020	0.675	B557818	1.35	0.020	B557818
Total Organic Nitrogen (N)	mg/L	0.073	0.020	0.122	B558821	<0.020	0.020	B558821
Sulphide (as H2S)	mg/L	0.0029	0.0020	<0.0020	B557402	0.0029	0.0020	B557402
Misc. Inorganics								
Conductivity	uS/cm	300	2.0	210	B560413	250	2.0	B560708
рН	рН	8.61	N/A	6.74	B560405	7.10	N/A	B560699
Total Organic Carbon (C)	mg/L	0.83	0.50	<0.50	B573078	<0.50	0.50	B573078
Total Dissolved Solids	mg/L	210	10	160	B559059	170	10	B559059
Anions								
Alkalinity (PP as CaCO3)	mg/L	7.0	1.0	<1.0	B560411	<1.0	1.0	B560707
Alkalinity (Total as CaCO3)	mg/L	150	1.0	51	B560411	61	1.0	B560707
Bicarbonate (HCO3)	mg/L	160	1.0	63	B560411	75	1.0	B560707
Carbonate (CO3)	mg/L	8.4	1.0	<1.0	B560411	<1.0	1.0	B560707
Dissolved Fluoride (F)	mg/L	0.058	0.050	<0.050	B560718	<0.050	0.050	B560718
Hydroxide (OH)	mg/L	<1.0	1.0	<1.0	B560411	<1.0	1.0	B560707
Total Sulphide	mg/L	0.0027	0.0018	<0.0018	B566299	0.0027	0.0018	B566299
Chloride (CI)	mg/L	1.5	1.0	27	B560737	30	1.0	B560737
Sulphate (SO4)	mg/L	5.6	1.0	6.0	B560737	6.1	1.0	B560737
MISCELLANEOUS								
True Colour	Col. Unit	3.4	2.0	<2.0	B559434	<2.0	2.0	B559434
Transmittance at 254nm	%T/cm	94	N/A	99	B563176	99	N/A	B563176
Nutrients								
Total Ammonia (N)	mg/L	<0.015	0.015	<0.015	B573461	<0.015	0.015	B573461
Nitrate plus Nitrite (N)	mg/L	<0.020	0.020	0.675	B560766	1.35	0.020	B560766
Total Nitrogen (N)	mg/L	0.073	0.020	0.797	B575097	1.21 (1)	0.020	B575097
Physical Properties								
Turbidity	NTU	0.14	0.10	0.13	B559216	<0.10	0.10	B559216
Control of the Contro								

RDL = Reportable Detection Limit

N/A = Not Applicable

⁽¹⁾ Nitrogen < Nitrate: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Report Date: 2024/10/24

DISTRICT OF LANTZVILLE Your P.O. #: 955641

VIHA PKG, WELLS/SPRINGS - BURNABY (WATER)

Bureau Veritas ID		CXL840		CXL841		CXL842		
Sampling Date		2024/10/09 09:00		2024/10/09 08:00		2024/10/09 08:15		
COC Number		C#738834-01-01		C#738834-01-01		C#738834-01-01		
	UNITS	FOOTHILL WELL D4	RDL	WELL 12	QC Batch	WELL 4	RDL	QC Batch
Elements		38.000 N N N N N N N N N N N N N N N N N N			_			
Total Mercury (Hg)	ug/L	<0.0019	0.0019	<0.0019	B561046	<0.0019	0.0019	B561046
Total Metals by ICPMS								
Total Aluminum (AI)	ug/L	<6.0	6.0	<3.0	B562093	<3.0	3.0	B562093
Total Antimony (Sb)	ug/L	<1.0	1.0	<0.50	B562093	<0.50	0.50	B562093
Total Arsenic (As)	ug/L	5.68	0.20	<0.10	B562093	<0.10	0.10	B562093
Total Barium (Ba)	ug/L	<2.0	2.0	8.6	B562093	9.0	1.0	B562093
Total Beryllium (Be)	ug/L	<0.20	0.20	<0.10	B562093	<0.10	0.10	B562093
Total Bismuth (Bi)	ug/L	<2.0	2.0	<1.0	B562093	<1.0	1.0	B562093
Total Boron (B)	ug/L	2480	100	58	B562093	120	50	B562093
Total Cadmium (Cd)	ug/L	<0.020	0.020	<0.010	B562093	<0.010	0.010	B562093
Total Chromium (Cr)	ug/L	<2.0	2.0	<1.0	B562093	<1.0	1.0	B562093
Total Cobalt (Co)	ug/L	<0.40	0.40	<0.20	B562093	<0.20	0.20	B562093
Total Copper (Cu)	ug/L	<0.40	0.40	0.51	B562093	1.13	0.20	B562093
Total Iron (Fe)	ug/L	<10	10	26.1	B562093	<5.0	5.0	B562093
Total Lead (Pb)	ug/L	0.45	0.40	<0.20	B562093	<0.20	0.20	B562093
Total Manganese (Mn)	ug/L	5.2	2.0	<1.0	B562093	<1.0	1.0	B562093
Total Molybdenum (Mo)	ug/L	<2.0	2.0	<1.0	B562093	<1.0	1.0	B562093
Total Nickel (Ni)	ug/L	<2.0	2.0	<1.0	B562093	<1.0	1.0	B562093
Total Selenium (Se)	ug/L	<0.20	0.20	<0.10	B562093	<0.10	0.10	B562093
Total Silicon (Si)	ug/L	16300	200	11800	B562093	12100	100	B562093
Total Silver (Ag)	ug/L	<0.040	0.040	<0.020	B562093	<0.020	0.020	B562093
Total Strontium (Sr)	ug/L	81.8	2.0	63.5	B562093	77.3	1.0	B562093
Total Thallium (TI)	ug/L	<0.020	0.020	<0.010	B562093	<0.010	0.010	B562093
Total Tin (Sn)	ug/L	<10	10	<5.0	B562093	<5.0	5.0	B562093
Total Titanium (Ti)	ug/L	<10	10	<5.0	B562093	<5.0	5.0	B562093
Total Uranium (U)	ug/L	<0.20	0.20	<0.10	B562093	<0.10	0.10	B562093
Total Vanadium (V)	ug/L	<10	10	<5.0	B562093	<5.0	5.0	B562093
Total Zinc (Zn)	ug/L	<10	10	<5.0	B562093	<5.0	5.0	B562093
Total Zirconium (Zr)	ug/L	<0.20	0.20	<0.10	B562093	<0.10	0.10	B562093
Total Calcium (Ca)	mg/L	13.1	0.10	20.2	B557814	21.9	0.050	B557814
Total Magnesium (Mg)	mg/L	4.88	0.10	6.54	B557814	7.13	0.050	B557814
Total Potassium (K)	mg/L	<0.10	0.10	0.307	B557814	0.394	0.050	B557814

DISTRICT OF LANTZVILLE Your P.O. #: 955641

VIHA PKG, WELLS/SPRINGS - BURNABY (WATER)

Bureau Veritas ID		CXL840		CXL841		CXL842		
Sampling Date		2024/10/09 09:00		2024/10/09 08:00		2024/10/09 08:15		
COC Number		C#738834-01-01		C#738834-01-01		C#738834-01-01		
	UNITS	FOOTHILL WELL D4	RDL	WELL 12	QC Batch	WELL 4	RDL	QC Batch
Total Sodium (Na)	mg/L	54.0	0.10	7.42	B557814	12.9	0.050	B557814
Total Sulphur (S)	mg/L	<6.0	6.0	<3.0	B557814	<3.0	3.0	B557814
Microbiological Param.			•					
Heterotrophic Plate Count	CFU/mL	1	1	<1	B558896	<1	1	B558896
Iron Bacteria	CFU/mL	<25	25	<25	B558897	<25	25	B558897
Sulphate reducing bacteria	CFU/mL	<75	75	<75	B558898	<75	75	B558898
Total Coliforms	CFU/100mL	0	N/A	0	B558899	0	N/A	B558899
E. coli	CFU/100mL	0	N/A	0	B558899	0	N/A	B558899
Calculated Parameters								
Langelier Index (@ 4.4C)	N/A	0.252	N/A	-1.86	B558823	-1.39	N/A	B558823
Langelier Index (@ 60C)	N/A	0.993	N/A	-1.09	B558825	-0.620	N/A	B558825
Saturation pH (@ 4.4C)	N/A	8.36	N/A	8.60	B558823	8.49	N/A	B558823
Saturation pH (@ 60C)	N/A	7.62	N/A	7.83	B558825	7.72	N/A	B558825
RDL = Reportable Detection	Limit							

N/A = Not Applicable

QUALITY ASSURANCE REPORT

DISTRICT OF LANTZVILLE Your P.O. #: 955641

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	Blank	RPD	0
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B559059	Total Dissolved Solids	2024/10/11	100	80 - 120	102	80 - 120	<10	mg/L	5.1	20
B559216	Turbidity	2024/10/10			104	80 - 120	<0.10	NTU	3.6	20
B559434	True Colour	2024/10/10			100	80 - 120	<2.0	Col. Unit	NC	20
B560405	Hd	2024/10/10			100	97 - 103				
B560411	Alkalinity (PP as CaCO3)	2024/10/10					<1.0	mg/L	NC	20
B560411	Alkalinity (Total as CaCO3)	2024/10/10			16	80 - 120	<1.0	mg/L	NC	20
B560411	Bicarbonate (HCO3)	2024/10/10					<1.0	mg/L	NC	20
B560411	Carbonate (CO3)	2024/10/10					<1.0	mg/L	NC	20
B560411	Hydroxide (OH)	2024/10/10					<1.0	mg/L	NC	20
B560413	Conductivity	2024/10/10			100	90 - 110	<2.0	uS/cm		
B560699	Hd	2024/10/10			100	97 - 103			0.74	N/A
B560707	Alkalinity (PP as CaCO3)	2024/10/10					<1.0	mg/L		
B560707	Alkalinity (Total as CaCO3)	2024/10/10			26	80 - 120	<1.0	mg/L		
B560707	Bicarbonate (HCO3)	2024/10/10					<1.0	mg/L		
B560707	Carbonate (CO3)	2024/10/10					<1.0	mg/L		
B560707	Hydroxide (OH)	2024/10/10					<1.0	mg/L		
B560708	Conductivity	2024/10/10			102	90 - 110	<2.0	uS/cm		
B560718	Dissolved Fluoride (F)	2024/10/10	96	80 - 120	97	80 - 120	<0.050	mg/L	NC	20
B560737	Chloride (CI)	2024/10/11	104	80 - 120	66	80 - 120	<1.0	mg/L	NC	20
B560737	Sulphate (SO4)	2024/10/11	96	80 - 120	93	80 - 120	<1.0	mg/L		
B560766	Nitrate plus Nitrite (N)	2024/10/10	108	80 - 120	112	80 - 120	<0.020	mg/L	2.0	25
B560767	Nitrite (N)	2024/10/10	25 (1)	80 - 120	105	80 - 120	<0.0050	mg/L	NC	20
B561046	Total Mercury (Hg)	2024/10/11	97	80 - 120	93	80 - 120	<0.0019	ng/L	NC	20
B562093	Total Aluminum (AI)	2024/10/15	97	80 - 120	95	80 - 120	<3.0	ng/L		
B562093	Total Antimony (Sb)	2024/10/15	100	80 - 120	101	80 - 120	<0.50	ng/L		
B562093	Total Arsenic (As)	2024/10/15	103	80 - 120	102	80 - 120	<0.10	ng/L	NC	20
B562093	Total Barium (Ba)	2024/10/15	66	80 - 120	66	80 - 120	<1.0	ng/L		
B562093	Total Beryllium (Be)	2024/10/15	104	80 - 120	106	80 - 120	<0.10	ng/L		
B562093	Total Bismuth (Bi)	2024/10/15	26	80 - 120	26	80 - 120	<1.0	ng/L		
B562093	Total Boron (B)	2024/10/15	NC	80 - 120	109	80 - 120	<50	ng/L		
B562093	Total Cadmium (Cd)	2024/10/15	100	80 - 120	100	80 - 120	<0.010	ng/L		
B562093	Total Chromium (Cr)	2024/10/15	06	80 - 120	91	80 - 120	<1.0	ng/L		
B562093	Total Cobalt (Co)	2024/10/15	92	80 - 120	92	80 - 120	<0.20	ng/L		

Page 8 of 10

Bureau Veritas Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

QUALITY ASSURANCE REPORT(CONT'D)

DISTRICT OF LANTZVILLE Your P.O. #: 955641

			Matrix Spike	Spike	Spiked Blank	Blank	Method Blank	llank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
B562093	Total Copper (Cu)	2024/10/15	92	80 - 120	92	80 - 120	<0.20	ng/L		
B562093	Total Iron (Fe)	2024/10/15	100	80 - 120	101	80 - 120	<5.0	1/Bn		
B562093	Total Lead (Pb)	2024/10/15	56	80 - 120	98	80 - 120	<0.20	ng/L		
B562093	Total Manganese (Mn)	2024/10/15	94	80 - 120	96	80 - 120	<1.0	1/8n		
B562093	Total Molybdenum (Mo)	2024/10/15	102	80 - 120	102	80 - 120	<1.0	1/8n		
B562093	Total Nickel (Ni)	2024/10/15	26	80 - 120	96	80 - 120	<1.0	1/8n		
B562093	Total Selenium (Se)	2024/10/15	86	80 - 120	100	80 - 120	<0.10	1/8n		
B562093	Total Silicon (Si)	2024/10/15	106	80 - 120	105	80 - 120	<100	ng/L		
B562093	Total Silver (Ag)	2024/10/15	96	80 - 120	26	80 - 120	<0.020	ng/L		
B562093	Total Strontium (Sr)	2024/10/15	NC	80 - 120	94	80 - 120	<1.0	1/8n		
B562093	Total Thallium (TI)	2024/10/15	101	80 - 120	76	80 - 120	<0.010	1/Bn		
B562093	Total Tin (Sn)	2024/10/15	105	80 - 120	102	80 - 120	<5.0	1/8n		
B562093	Total Titanium (Ti)	2024/10/15	86	80 - 120	96	80 - 120	<5.0	1/8n		
B562093	Total Uranium (U)	2024/10/15	68	80 - 120	94	80 - 120	<0.10	1/gn		
B562093	Total Vanadium (V)	2024/10/15	91	80 - 120	90	80 - 120	<5.0	1/gn		
B562093	Total Zinc (Zn)	2024/10/15	100	80 - 120	66	80 - 120	<5.0	1/gn		
B562093	Total Zirconium (Zr)	2024/10/15	95	80 - 120	102	80 - 120	<0.10	1/gn	200000000000000000000000000000000000000	
B563176	Transmittance at 254nm	2024/10/11		0 100	101	97 - 103			0.051	25
B566299	Total Sulphide	2024/10/16	42 (1)	80 - 120	87	80 - 120	<0.0018	mg/L	2.6	20
B573078	Total Organic Carbon (C)	2024/10/21	66	80 - 120	86	80 - 120	<0.50	mg/L	1.2	20
B573461	Total Ammonia (N)	2024/10/21	NC	80 - 120	100	80 - 120	<0.015	mg/L	0.88	20
B575097	Total Nitrogen (N)	2024/10/23	100	80 - 120	105	80 - 120	<0.020	mg/L	1.9	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL). (1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria. On a monthly basis, the Public Works Department obtains monthly water flow reporting which tracks water flow at various locations. Copies of those reports are below:

zville Nonth of: I	anuary, 2024		ter Flo	ows	wellfield	rkhills	¥.
Month of: J	anuary, 2024			115.	off M	400	ritles
Date	PIFION	UPZFIO	w Foothill	wate Ri	Harnoc Harnoc	dec Foothills	5°
2024-01-01	397 m ³	238 m³	o m³	558 m³	0 m³	44.61 m ³	
2024-01-02	384 m³	213 m³	155.65 m ³	608 m³	o m³	27.61 m ³	
2024-01-03	386 m³	364 m³	o m³	682 m³	o m³	51.16 m ³	
2024-01-04	395 m³	236 m³	107.91 m ³	593 m³	o m³	14.72 m ³	
2024-01-05	390 m³	109 m³	40.25 m ³	442 m³	o m³	0.18 m³	
2024-01-06	390 m³	81 m³	0.99 m³	390 m³	o m³	2.25 m³	
2024-01-07	413 m³	173 m³	136.68 m ³	563 m³	o m³	2.68 m³	
2024-01-08	393 m³	146 m³	o m³	494 m³	o m³	0.36 m³	
2024-01-09	394 m³	170 m³	147.41 m³	569 m³	o m³	0.12 m³	
2024-01-10	388 m³	181 m³	o m³	485 m³	o m³	0.25 m ³	
2024-01-11	400 m³	189 m³	143.24 m³	547 m³	o m³	0.42 m³	
2024-01-12	381 m³	180 m³	o m³	560 m³	o m³	0.24 m ³	
2024-01-13	389 m³	194 m³	118.07 m ³	539 m³	o m³	0.58 m³	
2024-01-14	436 m³	179 m³	20.74 m ³	583 m³	o m³	1.66 m³	
2024-01-15	465 m³	23 m³	104.9 m³	406 m³	o m³	0.17 m ³	
2024-01-16	431 m³	147 m³	33.4 m³	553 m³	o m³	0.76 m³	
2024-01-17	376 m³	173 m³	69.55 m³	464 m³	o m³	0.3 m³	
2024-01-18	403 m³	187 m³	65.92 m³	594 m³	o m³	0.04 m ³	
2024-01-19	386 m³	180 m³	77.89 m³	529 m³	o m³	0.04 m ³	
2024-01-20	372 m³	186 m³	55.65 m ³	535 m³	o m³	0.48 m³	
2024-01-21	395 m³	148 m³	107.13 m ³	503 m³	o m³	1.06 m³	
2024-01-22	398 m³	29 m³	46.5 m³	330 m³	o m³	0.39 m³	
2024-01-23	385 m³	166 m³	127.79 m³	554 m³	o m³	0.39 m³	
2024-01-24	388 m³	172 m³	10.57 m³	499 m³	o m³	0.39 m³	
2024-01-25	378 m³	193 m³	53-59 m ³	502 m³	o m³	0.39 m³	
2024-01-26	374 m³	177 m³	91.57 m³	540 m³	o m³	0.18 m³	
2024-01-27	375 m³	197 m³	4.27 m ³	534 m³	o m³	1.59 m³	
2024-01-28	415 m³	182 m³	136.3 m ³	579 m³	o m³	2.59 m³	
2024-01-29	384 m³	75 m³	o m³	406 m³	o m³	0.3 m³	
2024-01-31	407 m³	97 m³	144.99 m³	456 m³	o m³	1.9 m³	
Sum Total	11868 m³	4985 m³	2000.95 m ³	15597 m ³	o m³	157.83 m³	
Average	395.6 m³	166.17 m³	66.7 m³	519.9 m³	o m³	5.26 m ³	
Max Date	2024-01-15	2024-01-03	2024-01-02	2024-01-03	2024-01-01	2024-01-03	
Maximum	465 m³	364 m³	155.65 m³	682 m³	o m³	51.16 m³	
Min Date	2024-01-20	2024-01-15	2024-01-01	2024-01-22	2024-01-01	2024-01-18	
Minimum	372 m³	23 m³	o m³	330 m³	o m³	0.04 m³	

Water Flows wate Rd from Welffeld Month of: February, 2024 UPZFlow LPZ Flow 504 m³ 2024-02-01 370 m³ 193 m³ 162.09 m³ 518 m³ 1.09 m³ 181 m³ o m³ o m³ 2024-02-02 361 m³ 151.38 m³ 0.41 m³ 524 m³ o m³ 361 m³ 197 m3 2024-02-03 2.64 m³ 182 m³ 0 m^3 544 m³ o m³ 372 m³ 2024-02-04 78 m³ 54.87 m³ 369 m³ o m³ 0.12 m³ 350 m³ 2024-02-05 88.66 m³ 586 m³ o m³ 33.76 m³ 2024-02-06 366 m³ 228 m³ 371 m³ o m³ 0.26 m³ 357 m³ 56 m³ 2.99 m3 2024-02-07 140.31 m³ 457 m³ o m³ 9.31 m³ 383 m³ 167 m³ 2024-02-08 179 m³ o m³ 517 m³ o m³ 3.02 m³ 371 m³ 2024-02-09 2024-02-10 352 m³ 201 m³ 154.71 m³ 531 m³ o m³ 0.27 m³ 2024-02-11 372 m³ 183 m³ o m³ 539 m³ o m³ 1.51 m³ 0.31 m3 194 m³ 139.24 m³ 525 m³ o m³ 2024-02-12 373 m³ 0.8 m3 357 m³ 117 m³ o m³ 420 m³ o m³ 2024-02-13 o m³ 0.36 m³ 368 m³ 54 m³ 122.46 m³ 369 m³ 2024-02-14 0.36 m³ 377 m³ 169 m³ 0 m³ 544 m³ o m3 2024-02-15 0.17 m³ o m³ 2024-02-16 363 m³ 186 m³ 134.35 m³ 492 m³ 0.56 m³ 528 m³ o m3 2024-02-17 355 m³ 201 m³ 17.64 m³ o m³ 1.02 m³ 464 m³ 2024-02-18 357 m³ 184 m³ 31.91 m³ 572 m³ 0 m^3 3.01 m³ 2024-02-19 372 m³ 200 m³ 108.68 m³ 5.32 m³ 2024-02-20 450 m³ 118 m³ 11.65 m³ 515 m³ 0 m^3 2.98 m3 86 m³ 373 m³ o m³ 2024-02-21 373 m³ 130.91 m³ 0.61 m³ o m3 2024-02-22 385 m³ 138 m³ o m³ 525 m³ 0.61 m³ 467 m³ o m³ 165 m³ 152.26 m3 2024-02-23 359 m³ o m3 0.4 m³ 197 m³ o m³ 534 m³ 2024-02-24 355 m³ o m³ 1.32 m3 368 m³ 191 m³ 146.17 m³ 476 m³ 2024-02-25 o m³ 0.95 m3 557 m³ 2024-02-26 351 m³ 193 m³ 12.91 m3 0.56 m³ o m³ 185 m³ 453 m³ 358 m³ 54.42 m³ 2024-02-27 465 m³ o m³ 0.56 m³ 90.51 m³ 183 m³ 2024-02-29 343 m³ o m³ 75.1 m³ 1908.13 m3 13739 m³ Sum Total 10279 m³ 4606 m3 2.68 m³ 68.15 m³ 490.68 m³ o m³ 367.11 m³ 164.5 m³ Average

2024-02-01

162.09 m3

2024-02-02

o m³

2024-02-06

586 m³

2024-02-05

369 m³

2024-02-01

o m³

2024-02-01

o m³

2024-02-06

33.76 m³

2024-02-05

 0.12 m^3

Max Date

Maximum

Min Date

Minimum

2024-02-20

450 m³

2024-02-29

343 m³

2024-02-06

228 m³

2024-02-14

54 m³

ruce					Horn Welfield	to Foothins	
eLifeHere Month of: N	larch 2024				Welly	Othin	×
Wionan on W	iai cii, 2024			1611	OFF	040°	Outle
	PIFION	JPZ Flow	Foothile	, n	the of	to Foothill.	
Date	07 F10	,01F16	Cothi	"late"	STANG	Jarvic	
O.	1	2,	40	14	No.	W.	
2024-03-01	421 m³	130 m³	142.13 m³	510 m³	0 m³	0.4 m³	
2024-03-02	430 m³	138 m³	o m³	547 m³	o m³	1.1 m³	
2024-03-03	442 m³	224 m³	160.07 m ³	598 m³	o m³	4.1 m³	
2024-03-04	445 m³	112 m³	o m³	476 m³	o m³	1.27 m ³	
2024-03-05	493 m³	165 m³	135.55 m³	630 m³	o m³	2.47 m³	
2024-03-06	450 m³	172 m³	18.99 m³	573 m³	o m³	0.26 m³	
2024-03-07	460 m³	181 m³	29.9 m³	629 m³	o m³	0.57 m³	
2024-03-08	438 m³	197 m³	117.95 m³	588 m³	o m³	0.38 m³	
2024-03-09	454 m³	188 m³	o m³	517 m³	o m³	1.42 m ³	
2024-03-10	446 m³	198 m³	155.6 m³	628 m³	o m³	1.09 m³	
2024-03-11	455 m³	189 m³	o m³	586 m³	o m³	0.14 m³	
2024-03-12	448 m³	165 m³	158.38 m³	570 m³	o m³	0.14 m³	
2024-03-13	445 m³	69 m³	o m³	469 m³	o m³	0.28 m ³	
2024-03-14	454 m³	112 m³	109.55 m³	515 m³	o m³	4.81 m ³	
2024-03-15	446 m³	180 m³	55.75 m³	620 m³	o m³	0.08 m³	
2024-03-16	472 m³	195 m³	161.16 m ³	617 m³	o m³	0.9 m³	
2024-03-17	370 m³	195 m³	o m³	444 m³	o m³	3.54 m³	
2024-03-18	366 m³	179 m³	100.97 m ³	531 m³	o m³	0.13 m³	
2024-03-19	351 m³	o m³	44-59 m³	366 m³	o m³	0.02 m ³	
2024-03-20	354 m³	165 m³	125.09 m ³	429 m³	o m³	0.26 m ³	
2024-03-21	359 m³	183 m³	o m³	525 m³	o m³	0.15 m³	
2024-03-22	364 m³	183 m³	126.18 m ³	521 m³	o m³	0.15 m³	
2024-03-23	365 m³	178 m³	4.67 m³	475 m³	o m³	0.27 m ³	
2024-03-24	393 m³	185 m³	81.23 m ³	531 m³	o m³	3.79 m ³	
2024-03-25	382 m³	19 m³	70.26 m ³	352 m³	o m³	1.19 m³	
2024-03-26	380 m³	143 m³	11.19 m³	500 m³	o m³	0.81 m ³	
2024-03-27	385 m³	170 m³	132.9 m³	560 m³	o m³	o.81 m ³	
2024-03-28	386 m³	186 m³	o m³	501 m³	o m³	5.27 m ³	
2024-03-29	390 m³	199 m³	157-58 m ³	559 m³	o m³	1.06 m ³	
2024-03-31	402 m³	185 m³	o m³	482 m³	o m³	1.19 m³	
Sum Total	12446 m³	4785 m³	2099.7 m ³	15849 m³	o m³	38.04 m³	
Average	414.87 m ³	159.5 m ³	69.99 m³	528.3 m ³	o m³	1.27 m³	
Max Date	2024-03-05	2024-03-03	2024-03-16	2024-03-05	2024-03-01	2024-03-28	
Maximum	493 m³	224 m³	161.16 m³	630 m³	o m³	5.27 m³	
Min Date	2024-03-19	2024-03-19	2024-03-02	2024-03-25	2024-03-01	2024-03-19	
Minimum	351 m³	o m³	o m³	352 m³	o m³	0.02 m ³	
	90000						

4	rille		vva	cci i i	J V V J	bla		
levo	.ifeHere Month of: A	April 2024				Nellfie	athills	*
	violitii ol. 7				Iell	OHIV	Fou	outles
		6	4 .64	4. 4	SN 2	340	de d	30
	Oate	187 Flor	UPZFlow	Foothill	Water	A From Welfeld	de Foothile	
	2024-04-01	452 m³	184 m³	6.52 m³	578 m³	o m³	10.12 m³	
	2024-04-02	462 m³	98 m³	138.82 m³	494 m³	o m³	10.54 m³	
	2024-04-03	405 m³	74 m³	o m³	458 m³	o m³	1.92 m³	
	2024-04-04	393 m³	163 m³	130.45 m³	492 m³	o m³	0.68 m³	
	2024-04-05	418 m³	188 m³	38.78 m³	534 m³	o m³	0.52 m ³	
	2024-04-06	461 m³	188 m³	73.85 m ³	590 m³	o m³	0.52 m³	
	2024-04-07	413 m³	195 m³	128.06 m ³	558 m³	o m³	3.45 m³	
	2024-04-08	399 m³	186 m³	36.42 m³	575 m³	o m³	1.07 m ³	
	2024-04-09	407 m³	191 m³	75.98 m³	571 m³	40.25 m³	2.63 m³	
	2024-04-10	397 m³	183 m³	178.97 m³	483 m³	o m³	28.68 m³	
	2024-04-11	391 m³	187 m³	55.9 m³	526 m³	o m³	1.1 m³	
	2024-04-12	458 m³	138 m³	128.33 m³	608 m³	o m³	0.53 m³	
	2024-04-13	459 m³	196 m³	o m³	596 m³	o m³	8.38 m³	
	2024-04-14	480 m³	205 m³	147.34 m³	647 m³	o m³	17.1 m³	
	2024-04-15	463 m³	202 m³	22.7 m³	595 m³	o m³	59.44 m³	
	2024-04-16	470 m³	191 m³	147.01 m ³	558 m³	o m³	35.62 m³	
	2024-04-17	503 m³	210 m³	24.58 m³	659 m³	o m³	2.09 m ³	
	2024-04-18	526 m³	194 m³	203.52 m³	709 m³	o m³	3.81 m³	
	2024-04-19	528 m³	191 m³	19.92 m³	626 m³	o m³	6.46 m³	
	2024-04-20	508 m³	182 m³	140.71 m³	692 m³	o m³	10.25 m ³	
	2024-04-21	484 m³	170 m³	105.29 m³	568 m³	o m³	8.86 m³	
	2024-04-22	507 m ³	187 m³	60.02 m ³	686 m³	o m³	7.44 m³	
	2024-04-23	475 m³	194 m³	206.69 m ³	581 m³	o m³	6.51 m ³	
	2024-04-24	430 m³	o m³	28.87 m³	405 m³	o m³	0.7 m ³	
	2024-04-25	392 m³	163 m³	143.11 m³	509 m³	o m³	2.97 m ³	
	2024-04-26	437 m³	190 m³	34.58 m³	552 m³	o m³	0.36 m³	
	2024-04-27	408 m³	190 m³	151 m³	602 m³	o m³	0.6 m³	
	2024-04-28	464 m³	205 m ³	44.79 m³	606 m³	o m³	2.6 m ³	
	2024-04-30	457 m³	179 m³	140.75 m ³	584 m³	o m³	2.6 m ³	
	Sum Total	13047 m³	5024 m³	2612.97 m³	16642 m³	40.25 m³	237.52 m³	
	Average	449.9 m³	173.24 m³	90.1 m³	573.86 m³	1.39 m³	8.19 m³	
	Max Date	2024-04-19	2024-04-17	2024-04-23	2024-04-18	2024-04-09	2024-04-15	
	Maximum	528 m³	210 m³	206.69 m³	709 m³	40.25 m³	59.44 m³	
	Min Date	2024-04-11	2024-04-24	2024-04-03	2024-04-24	2024-04-01	2024-04-26	

o m³

405 m³

o m³

Minimum

391 m³

o m³

0.36 m³

Wate Red from Welffeld

That are the standard to the standard Month of: May, 2024 Foothillswell UPZFlow LPZ Flow 2024-05-01 460 m³ 188 m³ 145.45 m³ 2024-05-02 493 m³ 188 m³ 117.96 m3 2024-05-03 536 m³ 182 m³ 117.96 m³ 700 m³ o m³ 1.67 m³ 2024-05-04 501 m³ 192 m³ 124.84 m³ 632 m³ o m³ 7.94 m³ 2024-05-05 482 m³ 192 m³ 79.35 m³ 589 m³ o m³ 10.83 m³ 2024-05-06 521 m³ 194 m³ 109.21 m³ 665 m³ o m³ 0.63 m³ 2024-05-07 533 m³ 187 m³ 112.31 m³ 663 m³ o m³ 7.37 m³ 18.89 m³ 2024-05-08 629 m³ 197 m³ 106.94 m³ 815 m³ o m³ 2024-05-09 635 m³ 214 m³ 144.69 m³ 716 m³ 0 m³ 26.07 m3 2024-05-10 734 m³ 235 m³ 227.54 m³ 892 m³ o m3 43.33 m³ 69.07 m3 768 m³ 269 m3 945 m³ o m³ 2024-05-11 139.3 m³ o m³ 56.62 m³ 842 m³ 211 m³ 1005 m³ 2024-05-12 157.43 m3 726 m³ 276 m³ 35.6 m³ 909 m³ o m3 2024-05-13 175.49 m³ 2024-05-14 780 m³ 207 m³ 936 m³ 0 m^3 31.85 m³ 241.75 m³ 787 m³ 300 m³ o m³ 70.3 m³ 2024-05-15 266.55 m³ 944 m³ 926 m³ 33.76 m³ 799 m³ 191 m³ o m³ 2024-05-16 177.79 m³ 786 m³ 205 m³ 211.78 m³ 946 m³ o m³ 24.8 m³ 2024-05-17 716 m³ 265 m³ 198.12 m³ 880 m³ o m³ 29.11 m³ 2024-05-18 2024-05-19 724 m³ 240 m³ 180.74 m³ 858 m³ o m³ 31.93 m3 886 m³ 234 m³ 248.51 m3 1032 m³ o m³ 71.81 m3 2024-05-20 539 m³ 252 m³ 741 m³ o m³ 18.53 m3 2024-05-21 130.53 m3 631 m³ 188 m³ 231.3 m³ 755 m³ 0 m³ 13.31 m³ 2024-05-22 2024-05-23 635 m³ 191 m³ 137.81 m³ 759 m³ 23.95 m³ 21.31 m³ 187 m³ 801 m³ 2024-05-24 695 m³ 165.24 m³ o m³ 6.14 m³ 181 m³ 674 m³ 3.44 m³ 2024-05-25 590 m³ 153.07 m³ o m³ 605 m³ 268 m³ 858 m³ 10.98 m³ 2024-05-26 139.3 m³ o m³ 630 m³ 185 m³ 682 m³ 8.9 m³ 2024-05-27 193.77 m³ o m3 2024-05-28 627 m³ 188 m³ 116.82 m³ 792 m³ o m³ 7.75 m³ 2024-05-29 577 m³ 190 m³ 199.51 m³ 699 m³ o m³ 9.42 m³ 2024-05-31 708 m³ 202 m³ 120.83 m³ 828 m³ o m³ 15.24 m³ Sum Total 19575 m³ 6399 m³ 4871.87 m³ 23854 m³ 23.95 m³ 702.87 m³ Average 652.5 m³ 213.3 m³ 162.4 m³ 795.13 m³ 0.8 m³ 23.43 m³ Max Date 2024-05-20 2024-05-15 2024-05-15 2024-05-20 2024-05-23 2024-05-20 Maximum 886 m³ 300 m³ 266.55 m³ 1032 m³ 23.95 m³ 71.81 m³

2024-05-05

79.35 m³

2024-05-05

589 m³

2024-05-01

0 m³

2024-05-06 0.63 m³

Min Date

Minimum

2024-05-01

460 m³

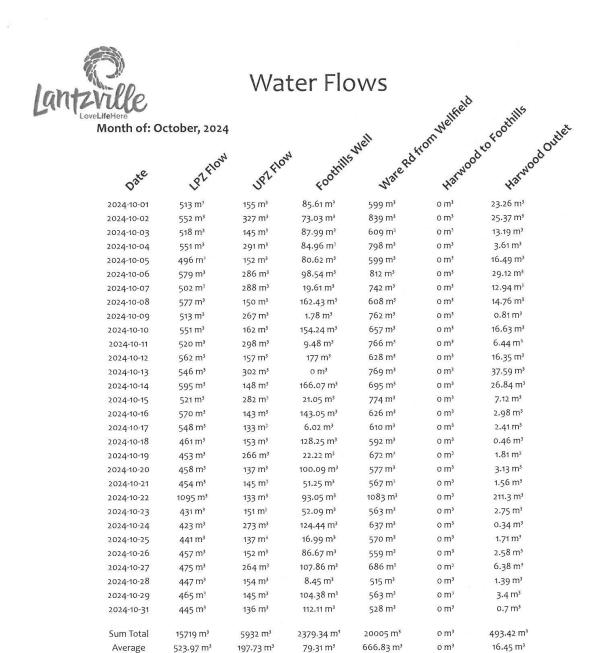
2024-05-25

181 m³

Ville veLifeHere		vva	cci i ic	J V V S	A From Walfield	:115	
Month of: J	une, 2024				Well	othir	· ex
				1ell	Offi	"OKO"	wile
	· os	4 6	4. 4	570	Skir	de o	,
Oate	187 Flor	N UPZ Flow	, Foothill	Water	Harwo	de Foothills	
2024-06-01	563 m³	177 m³	120.94 m³	679 m³	0 m³	4.47 m³	
2024-06-02	544 m³	277 m³	124.56 m³	760 m³	o m³	20.92 m³	
2024-06-03	550 m³	191 m³	108.02 m³	683 m³	o m³	2.7 m³	
2024-06-04	584 m³	92 m³	108.02 m ³	562 m³	o m³	2.7 m ³	
2024-06-05	650 m³	309 m³	135.12 m³	940 m³	o m³	21.92 m³	
2024-06-06	739 m³	195 m³	195.97 m³	833 m³	o m³	25.04 m³	
2024-06-07	775 m³	215 m³	226.08 m ³	941 m³	o m³	40.91 m³	
2024-06-08	809 m³	312 m³	189.62 m³	1001 m ³	o m³	72.85 m³	
2024-06-09	843 m³	309 m³	181.69 m³	1089 m³	o m³	106.24 m³	
2024-06-10	782 m³	199 m³	239.16 m ³	826 m³	o m³	30.27 m ³	
2024-06-11	711 m³	199 m³	235.32 m³	905 m³	o m³	14.93 m³	
2024-06-12	795 m³	285 m³	203.84 m³	949 m³	o m³	47.74 m³	
2024-06-13	767 m³	207 m³	229.53 m³	897 m³	o m³	61.59 m ³	
2024-06-14	646 m³	179 m³	185.93 m³	738 m³	o m³	10.99 m³	
2024-06-15	587 m³	274 m³	157.21 m ³	849 m³	o m³	4.23 m ³	
2024-06-16	615 m³	208 m³	171.01 m ³	729 m³	o m³	7.7 m³	
2024-06-17	778 m³	208 m³	168.04 m ³	917 m³	0 m³	58.02 m ³	
2024-06-18	774 m³	297 m³	226.24 m ³	976 m³	o m³	23.37 m ³	
2024-06-19	870 m³	243 m³	195.46 m³	994 m³	o m³	51.38 m ³	
2024-06-20	908 m³	333 m³	186.64 m³	1196 m³	o m³	110.75 m³	
2024-06-21	913 m³	266 m ³	214-11 m ³	1039 m³	o m³	81.32 m ³	
2024-06-22	825 m³	318 m³	208.84 m³	1066 m³	o m³	97.38 m³	
2024-06-23	828 m³	235 m³	164.81 m ³	983 m³	o m³	68.51 m ³	
2024-06-24	863 m³	290 m³	210.61 m ³	1014 m³	o m³	88.6 m³	
2024-06-25	841 m³	331 m³	206.44 m ³	1119 m³	o m³	72.67 m³	
2024-06-26	730 m³	202 m³	206.44 m³	827 m³	o m³	16.58 m³	
2024-06-27	597 m³	190 m³	161.56 m³	725 m³	o m³	7.53 m ³	
2024-06-28	742 m³	271 m³	205.8 m ³	940 m³	o m³	16.86 m³	
2024-06-30	614 m³	194 m³	143.02 m ³	725 m³	o m³	10.57 m ³	
Sum Total	21243 m³	7006 m³	5310.01 m ³	25902 m³	o m³	1178.74 m³	
Average	732.52 m³	241.59 m³	183.1 m³	893.17 m ³	o m³	40.65 m³	
Max Date	2024-06-21	2024-06-20	2024-06-10	2024-06-20	2024-06-01	2024-06-20	
Maximum	913 m³	333 m³	239.16 m³	1196 m³	o m³	110.75 m³	
Min Date	2024-06-02	2024-06-04	2024-06-03	2024-06-04	2024-06-01	2024-06-03	
Minimum	544 m³	92 m³	108.02 m³	562 m³	o m³	2.7 m³	

Month of: July, 2024

				Well	YOR .	*0 C
	104	4 (10)	n sille	P.	,00	,000
Date	187 Flor	UPZFIO	w Foothile	well waterd	trom Harwood	Harwood
2024-07-01	798 m³	329 m³	148.36 m³	1014 m³	o m³	66.73 m³
2024-07-02	892 m³	313 m³	178.24 m³	1144 m³	o m³	71.21 m ³
2024-07-03	923 m³	432 m³	86.14 m³	1236 m³	130.96 m³	55.42 m³
2024-07-04	960 m³	513 m³	35.96 m³	1346 m³	199.84 m³	16.64 m³
2024-07-05	1044 m³	595 m³	41.51 m ³	1474 m³	225.05 m³	64.98 m³
2024-07-06	976 m³	429 m³	105.8 m³	1307 m³	96.72 m³	77.16 m³
2024-07-07	1027 m³	425 m³	222.76 m³	1361 m³	o m³	115.4 m ³
2024-07-08	1101 m³	517 m³	92.82 m³	1442 m³	134.69 m³	54.6 m³
2024-07-09	1092 m³	521 m³	41.91 m³	1513 m³	223.82 m³	51 m³
2024-07-10	1137 m ³	433 m³	125.18 m ³	1460 m³	88.76 m³	58.4 m³
2024-07-11	1025 m³	401 m³	227.66 m ³	1319 m³	o m³	91.65 m ³
2024-07-12	1157 m³	506 m³	137.35 m ³	1468 m³	167.41 m³	128.36 m ³
2024-07-13	988 m³	493 m³	26.76 m ³	1412 m³	142.62 m³	61.47 m ³
2024-07-14	1160 m³	620 m³	41.7 m ³	1501 m³	209.69 m³	37.12 m ³
2024-07-15	1110 m ³	432 m³	88.5 m³	1544 m³	107.95 m³	45.92 m³
2024-07-16	1158 m³	345 m³	236.6 m ³	1348 m³	o m³	79.54 m³
2024-07-17	1049 m³	348 m³	224.38 m³	1331 m³	o m³	119.05 m³
2024-07-18	1044 m³	281 m³	216.08 m ³	1149 m³	o m³	72.66 m³
2024-07-19	1070 m³	304 m³	208.94 m³	1273 m³	o m³	101.64 m ³
2024-07-20	1061 m³	508 m³	143.38 m ³	1452 m³	166.35 m ³	102.76 m³
2024-07-21	958 m³	515 m³	50 m³	1395 m³	157.08 m³	24.94 m³
2024-07-22	1030 m³	442 m³	82.19 m ³	1320 m³	137.18 m³	41.9 m³
2024-07-23	971 m³	322 m³	219.85 m³	1225 m³	o m³	80.31 m ³
2024-07-24	1001 m³	222 m³	209.09 m³	1062 m³	o m³	61.73 m³
2024-07-25	963 m³	322 m³	205.24 m ³	1242 m³	o m³	73.97 m³
2024-07-26	1057 m³	322 m³	199.01 m³	1253 m³	o m³	70.47 m³
2024-07-27	954 m³	482 m³	119.41 m³	1299 m³	217.18 m³	84.46 m ³
2024-07-28	1007 m³	451 m³	32.12 m³	1315 m³	154.2 m³	37.91 m³
2024-07-29	778 m³	288 m³	104.78 m³	982 rn ³	76.07 m³	10.9 m³
2024-07-31	724 m³	193 m³	178.23 m³	863 m³	o m³	16.68 m³
Sum Total	30215 m³	12304 m ³	4029.96 m³	39050 m³	2635.57 m ³	1975 m³
Average	1007.17 m³	410.13 m³	134.33 m³	1301.67 m ³	87.85 m³	65.83 m³
Max Date	2024-07-14	2024-07-14	2024-07-16	2024-07-15	2024-07-05	2024-07-12
Maximum	1160 m³	620 m³	236.6 m³	1544 m³	225.05 m³	128.36 m³
Min Date	2024-07-31	2024-07-31	2024-07-13	2024-07-31	2024-07-01	2024-07-29
Minimum	724 m³	193 m³	26.76 m³	863 m³	o m³	10.9 m³


ruce					Hom Welfeed	Ato Foothills	
weLifeHere Month of: A	ugust 2024				Nelly	dro Foothill	x
Mondi oi. A	10-0			119,	OHIV.	Koc	outle
	.4	4 64	4	'N'	Arc of	ste st	50
*6	PZFloy	UPZFlow	Foothill	dek	MOL	TWO	
Date	181	Nb.	400	1/10	Har	Har	
2024-08-01	943 m³	335 m³	191.84 m³	1158 m³	o m³	86.6 m³	
2024-08-02	1145 m³	488 m³	72.29 m³	1459 m³	135.83 m³	52.89 m³	
2024-08-03	1021 m³	577 m³	35.9 m³	1334 m³	213.99 m³	29.89 m³	
2024-08-04	1123 m³	409 m³	73.38 m³	1289 m³	81.44 m ³	107.7 m³	
2024-08-05	1031 m ³	517 m ³	74.53 m ³	1449 m³	148.92 m³	65.85 m³	
2024-08-06	995 m³	493 m³	84.83 m ³	1315 m³	149.31 m³	36.35 m ³	
2024-08-07	952 m³	331 m³	206.07 m ³	1209 m³	o m³	74.16 m³	
2024-08-08	1040 m³	399 m³	132.93 m³	1321 m³	154.4 m³	81.89 m ³	
2024-08-09	981 m³	474 m³	24.21 m³	1345 m³	144.11 m³	28.33 m³	
2024-08-10	965 m³	530 m³	35.56 m ³	1387 m³	204.82 m³	31.72 m³	
2024-08-11	863 m³	351 m³	78.48 m³	1068 m³	71.75 m³	45.24 m³	
2024-08-12	939 m³	342 m³	127.02 m³	1162 m³	80.14 m³	37.42 m³	
2024-08-13	854 m³	342 m³	209.88 m³	1133 m ³	o m³	58.88 m³	
2024-08-14	962 m³	305 m³	169.33 m³	1193 m³	o m³	91.65 m³	
2024-08-15	886 m³	234 m³	190.98 m³	961 m³	o m³	65.39 m³	
2024-08-16	976 m³	447 m³	114.23 m ³	1330 m³	174.54 m³	80.41 m ³	
2024-08-17	837 m³	457 m³	25.67 m ³	1182 m³	134.86 m³	21.76 m³	
2024-08-18	738 m³	287 m³	128.77 m ³	973 m³	72.34 m³	18.98 m³	
2024-08-19	694 m³	323 m³	43.9 m³	909 m³	59.9 m³	7.61 m ³	
2024-08-20	664 m³	199 m³	202.2 m ³	835 m³	o m³	25.69 m ³	
2024-08-21	611 m ³	239 m³	130.6 m³	725 m³	o m³	15.04 m³	
2024-08-22	643 m³	218 m³	143.09 m³	842 m³	o m³	8.02 m ³	
2024-08-23	628 m³	287 m³	43.78 m³	835 m³	118.06 m³	3.25 m³	
2024-08-24	598 m³	335 m³	14.64 m³	849 m³	59.92 m³	4.99 m³	
2024-08-25	629 m³	209 m³	193.26 m³	807 m ³	o m³	24.78 m³	
2024-08-26	594 m³	286 m³	44.9 m³	807 m³	69.05 m³	4.01 m ³	
2024-08-27	576 m³	251 m³	127.87 m ³	694 m³	o m³	20.39 m³	
2024-08-28	629 m³	317 m³	59.11 m³	922 m³	145.18 m³	26.79 m³	
2024-08-29	671 m³	360 m³	38.46 m³	917 m³	70.88 m³	28.47 m³	
2024-08-31	777 m³	274 m³	123.24 m³	939 m³	61.61 m ³	42.79 m³	
Sum Total	24965 m³	10616 m³	3140.95 m³	32349 m³	2351.05 m³	1226.93 m³	
Average	832.17 m ³	353.87 m ³	104.7 m³	1078.3 m³	78.37 m³	40.9 m³	
Max Date	2024-08-02	2024-08-03	2024-08-13	2024-08-02	2024-08-03	2024-08-04	
Maximum	1145 m³	577 m³	209.88 m³	1459 m³	213.99 m³	107.7 m³	
Min Date	2024-08-27	2024-08-20	2024-08-24	2024-08-27	2024-08-01	2024-08-23	
Minimum	576 m³	199 m³	14.64 m³	694 m³	o m³	3.25 m³	

ville		,,,			Krom welffield	to Foothills	
Month of	September, 2	024			Nelli	Othill	x
Month of: 2	1.50			110	OTT V	Koc	outles
	. 1	2. 4	4	Mc sq	the of	i di	0.
e		1410	ethill.	, eRi	OOW	dro Foothill	
Oate	187 Flor	UPZFION	Foothile	1/3.	Hai	Hai	
2024-09-01	777 m³	359 m³	23.72 m³	1024 m³	135.17 m ³	20.52 m³	
2024-09-02	871 m³	529 m³	35.53 m³	1280 m³	198.51 m³	28.52 m³	
2024-09-03	774 m³	317 m³	92.94 m³	1007 m³	79.58 m³	7.81 m ³	
2024-09-04	852 m³	280 m³	208.38 m ³	994 m³	o m³	65.02 m³	
2024-09-05	853 m³	346 m³	120.48 m³	1112 m³	75.19 m³	66.33 m³	
2024-09-06	854 m³	451 m³	70.02 m ³	1224 m³	149.41 m³	40.87 m ³	
2024-09-07	849 m³	512 m³	33.4 m³	1266 m³	194.64 m³	25.4 m³	
2024-09-08	909 m³	535 m³	38 m³	1352 m³	217.01 m ³	60.52 m ³	
2024-09-09	720 m³	439 m³	28.04 m ³	1049 m³	160.87 m³	5.75 m³	
2024-09-10	787 m³	394 m³	62.11 m ³	1103 m ³	147.72 m³	12.62 m³	
2024-09-11	628 m³	206 m³	213.7 m³	765 m³	o m³	23.84 m³	
2024-09-12	715 m³	286 m³	153.35 m³	924 m³	o m³	27.89 m³	
2024-09-13	643 m³	290 m³	90.12 m ³	843 m³	105.09 m³	8.42 m³	
2024-09-14	671 m³	333 m³	27.73 m ³	907 m³	70.13 m³	5.62 m ³	
2024-09-15	624 m³	198 m³	164.65 m³	801 m³	o m³	27.1 m ³	
2024-09-16	686 m³	387 m³	23.26 m ³	977 m³	133.77 m³	21.47 m³	
2024-09-17	625 m³	305 m ³	72.52 m³	868 m³	69 m³	29.21 m ³	
2024-09-18	678 m³	285 m³	171.2 m³	838 m³	o m³	44-37 m ³	
2024-09-19	605 m³	280 m³	150.44 m³	869 m³	o m³	43.23 m ³	
2024-09-20	697 m³	192 m³	152.35 m ³	822 m³	o m³	27.9 m³	
2024-09-21	590 m³	270 m³	145.77 m ³	776 m³	o m³	25.25 m ³	
2024-09-22	688 m³	195 m³	131.02 m ³	831 m³	o m³	30.7 m³	
2024-09-23	559 m³	264 m³	148.8 m³	752 m³	o m³	14.35 m³	
2024-09-24	669 m³	194 m³	134.92 m³	799 m³	o m³	8.67 m³	
2024-09-25	548 m³	263 m³	93.7 m³	693 m³	18.56 m³	10.58 m ³	
2024-09-26	586 m³	261 m³	4.33 m³	818 m³	44.01 m ³	6.89 m³	
2024-09-27	523 m³	336 m³	7.74 m³	800 m³	132.37 m³	2.46 m³	
2024-09-28	579 m³	274 m³	11.51 m³	794 m³	56.59 m³	16.61 m³	
2024-09-30	577 m³	301 m ³	0 m³	824 m³	66.62 m ³	15.72 m³	
Sum Total	20137 m³	9282 m³	2609.75 m³	27112 m³	2054.24 m³	723.67 m³	
Average	694.38 m³	320.07 m ³	89.99 m³	934.9 m³	70.84 m³	24.95 m³	
Max Date	2024-09-08	2024-09-08	2024-09-11	2024-09-08	2024-09-08	2024-09-05	
Maximum	909 m³	535 m³	213.7 m ³	1352 m³	217.01 m ³	66.33 m³	
Min Date	2024-09-27	2024-09-20	2024-09-30	2024-09-25	2024-09-04	2024-09-27	
Minimum	523 m³	192 m³	0 m ³	693 m ³	o m³	2.46 m ³	
wallingill	١١١ ر عر	172 111	5 III	٠,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-5 ****		

2024-10-12

177 m³

2024-10-13

o m³

2024-10-22

1083 m³

2024-10-28

515 m³

2024-10-01

o m³

2024-10-01

o m³

2024-10-02

327 m³

2024-10-17

133 m³

Max Date

Maximum

Min Date

Minimum

2024-10-22

1095 m³

2024-10-24

423 m³

2024-10-22

211.3 m³

2024-10-24

0.34 m³

Water Flows wate Rd from Welffeld Foothillswell Month of: November, 2024 UPZFlow LPZ Flow Date 175 m³ 105.11 m³ 576 m³ o m³ 1.04 m³ 2024-11-01 455 m³ 85.81 m³ 521 m³ 4.08 m³ 438 m³ 157 m³ o m³ 2024-11-02 575 m³ 3.43 m3 435 m³ 171 m³ 35.58 m3 o m3 2024-11-03 81.78 m³ 657 m³ o m³ 2.14 m³ 2024-11-04 417 m³ 240 m³ 447 m³ 160 m³ 105.6 m³ 529 m³ o m³ 3.95 m³ 2024-11-05 32.7 m³ 540 m³ o m³ 2.27 m³ 2024-11-06 435 m³ 164 m³ 428 m³ 62.3 m³ 556 m³ o m³ 3.43 m³ 2024-11-07 152 m³ 448 m³ 175 m³ 104.67 m³ 598 m³ o m³ 0.83 m³ 2024-11-08 165 m³ 63.2 m³ 579 m³ o m³ 3.73 m³ 2024-11-09 454 m³ 2024-11-10 462 m³ 306 m³ 32.05 m³ 741 m³ o m³ 7.92 m³ 10.72 m³ 2024-11-11 469 m3 182 m³ 96.62 m3 595 m³ o m³ 4.73 m³ 434 m³ 162 m³ 104.45 m³ 508 m³ o m³ 2024-11-12 1.35 m³ 427 m³ 177 m³ 5.45 m³ 569 m³ o m3 2024-11-13 7.14 m³ 2024-11-14 446 m³ 300 m³ 80.01 m³ 733 m³ o m3 2.98 m3 2024-11-15 449 m³ 181 m³ 108.97 m³ 540 m³ o m³ 7.32 m³ o m³ 2024-11-16 453 m³ 183 m³ o m³ 573 m³ 9.39 m³ 82.98 m³ 657 m³ o m3 2024-11-17 488 m³ 174 m³ 7.8 m³ 738 m³ 0 m^3 2024-11-18 454 m³ 321 m³ 93.87 m3 176 m³ 93.87 m³ 554 m³ 0 m3 7.13 m³ 2024-11-19 416 m³ 3.75 m³ 2024-11-20 350 m³ 176 m³ 93.87 m³ 464 m³ o m3 2.3 m3 448 m³ 204 m³ 93.87 m3 567 m³ o m³ 2024-11-21 3.34 m³ 694 m³ o m³ 2024-11-22 436 m³ 292 m³ 93.87 m3 556 m³ o m³ 6.51 m³ 438 m³ 179 m³ 47.31 m³ 2024-11-23 582 m³ 185 m³ 96.79 m3 o m³ 7.7 m³ 443 m³ 2024-11-24 577 m³ o m3 1.26 m³ 439 m³ 183 m³ o m3 2024-11-25 4.47 m³ 729 m³ o m³ 317 m³ 79.02 m³ 2024-11-26 442 m³ 6.58 m³ 178 m³ 94.48 m³ 555 m³ o m³ 450 m³ 2024-11-27 229 m³ 62.32 m³ 618 m³ o m³ 7.67 m³ 429 m³ 2024-11-28 4.92 m³ 431 m³ 173 m³ 25.73 m³ 624 m³ o m³

2062.25 m3

71.11 m³

2024-11-15

108.97 m3

2024-11-16

o m³

o m³

o m³

2024-11-01

0 m³

2024-11-01

o m³

17305 m³

596.72 m³

2024-11-10

741 m³

2024-11-20

464 m³

139.87 m³

4.82 m³

2024-11-11

10.72 m³

2024-11-08

0.83 m³

2024-11-30

Sum Total

Average

Max Date

Maximum

Min Date

Minimum

12761 m³

440.03 m³

2024-11-17

488 m³

2024-11-20

350 m³

5837 m³

201.28 m³

2024-11-18

321 m³

2024-11-07

152 m³

ville.		vva	cei i ic	7003	bla		
veLifeHere Month of: D	ecember, 20	024		. 2	Wellfie	oothills	,ex
				Nell	croft,	*0 E	OUTT
	104	1 Jou	lis.	Red	,00	,00	•
Oate	PZFlow	JPZ Flor	Foothill	Wate	From Welfield	to Foothills	
2024-12-01	455 m³	232 m³	64.25 m³	576 m³	o m³	11.42 m³	
2024-12-02	451 m³	287 m³	25.9 m³	735 m³	o m³	8.03 m³	
2024-12-03	428 m³	174 m³	91.69 m³	527 m ³	o m³	11.03 m³	
2024-12-04	420 m³	174 m³	52.02 m ³	545 m³	o m³	6.59 m³	
2024-12-05	396 m³	272 m³	37.61 m³	588 m³	o m³	2.24 m³	
2024-12-06	390 m³	226 m³	89.88 m³	580 m³	o m³	4.12 m ³	
2024-12-07	363 m³	181 m³	24.58 m³	568 m³	o m³	7.13 m³	
2024-12-08	384 m³	245 m³	57.47 m³	579 m³	o m³	18.17 m³	
2024-12-09	376 m³	216 m³	95.39 m³	508 m³	o m³	18.68 m³	
2024-12-10	386 m³	173 m³	42.32 m³	529 m³	o m³	6.42 m³	
2024-12-11	383 m³	310 m³	42.32 m³	658 m³	o m³	6.53 m ³	
2024-12-12	383 m³	151 m³	87.62 m³	538 m³	o m³	12.23 m³	
2024-12-13	396 m³	189 m³	36.78 m ³	539 m³	o m³	3.55 m³	
2024-12-14	400 m³	330 m³	50.01 m ³	639 m³	o m³	38.84 m³	
2024-12-15	402 m³	199 m³	96.59 m³	566 m³	o m³	27.67 m³	
2024-12-16	428 m³	262 m³	80.92 m³	664 m³	o m³	35.51 m ³	
2024-12-17	407 m³	184 m³	9.89 m³	506 m³	o m³	9.27 m³	
2024-12-18	393 m³	305 m³	36.47 m ³	641 m³	o m³	12.63 m³	
2024-12-19	397 m³	142 m³	87.62 m ³	496 m³	o m³	17.77 m³	
2024-12-20	395 m³	165 m³	6.51 m ³	569 m³	o m³	6.5 m³	
2024-12-21	401 m³	147 m³	114.72 m³	461 m³	o m³	1.32 m³	
2024-12-22	397 m³	178 m³	9.04 m³	547 m³	o m³	0.77 m ³	
2024-12-23	425 m³	217 m³	114.02 m ³	614 m³	o m³	16.37 m³	
2024-12-24	488 m³	222 m³	230.54 m³	646 m³	o m³	23.94 m³	
2024-12-25	477 m³	175 m³	o m³	648 m³	o m³	2.34 m ³	
2024-12-26	466 m³	146 m³	138.84 m³	509 m³	o m³	2.34 m³	
2024-12-27	464 m³	179 m³	o m³	587 m³	o m³	0.75 m³	
2024-12-28	456 m³	146 m³	90.01 m ³	602 m ³	o m³	3.04 m ³	
2024-12-29	468 m³	286 m³	41.12 m ³	722 m³	o m³	5.51 m³	
2024-12-31	462 m³	169 m³	68.39 m³	559 m³	o m³	1.1 m³	
Sum Total	12537 m³	6282 m³	1922.53 m³	17446 m³	o m³	321.83 m³	
Average	417.9 m³	209.4 m³	64.08 m ³	581.53 m³	o m³	10.73 m³	
Max Date	2024-12-24	2024-12-14	2024-12-24	2024-12-02	2024-12-01	2024-12-14	
Maximum	488 m³	330 m³	230.54 m³	735 m³	o m³	38.84 m³	
Min Date	2024-12-07	2024-12-19	2024-12-25	2024-12-21	2024-12-01	2024-12-27	
Minimum	363 m³	142 m³	o m³	461 m³	o m³	0.75 m³	

